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Major liver resections and partial orthotopic
liver transplantation (OLT) have become
established procedures in liver surgery; for

many patients, these techniques offer the only curative
option.1 Yet, many patients develop postoperative
complications because the remnant livers or grafts are
too small or of poor quality to sustain sufficient organ
function. This somewhat new and poorly defined phe-
nomenon has been termed ‘‘small-for-size syndrome’’
(SFSS) to describe this scenario. The concept is, in
fact, not a new one, because as early as the 1970s,
Thomas E. Starzl described the complicated postopera-
tive course of a young woman subjected to an almost
90% hepatectomy and who was subsequently charac-
terized by prolonged hyperbilirubinemia, encephalop-
athy, and coagulopathy.2 In an unconventional way for
a review, we will start with three case reports to illus-
trate the scope and clinical relevance of SFSS after liver
surgery and transplantation.

Case 1: A 47-year-old healthy man, whose wife was
listed for OLT due to a symptomatic nonresectable
hemangioendothelioma of the liver, offered to be con-
sidered for living donor liver transplantation (LDLT).
Following the standard work-up for this procedure, he
underwent a right hemi-hepatectomy including the
middle hepatic vein to serve as allograft for his wife.
The remnant left hemi-liver was estimated by com-
puted tomographic (CT) volumetry to weigh 450 g,
i.e., around 32% of the whole liver. The ratio of the
remnant liver weight to body weight (RLBW) was
0.65%. The donor had a difficult postoperative course
developing mild encephalopathy and hyperbilirubine-
mia lasting 20 days peaking at 178 lmol/L (10.4 mg/
dL) by day five, and severe coagulopathy (prothrombin
time <30%) that normalized by day 7. The donor
eventually recovered fully, and was discharged in good
general condition 22 days after surgery.
Case 2: A 42-year-old male was listed for OLT

because of Child B cirrhosis (Model for End-Stage
Liver Disease [MELD] score: 21) and a small (3 cm)
hepatocellular carcinoma (HCC) related to hepatitis B
virus infection. He received the right hemi-liver con-
taining the middle hepatic vein from his wife (graft
weighing 620 g), who had an uneventful postoperative
course. The ratio of graft size in grams to her hus-
band’s body weight (80 kg) (graft-to-recipient weight
ratio [GRWR]) was 0.7%. The postoperative period
was complicated by encephalopathy, hyperbilirubine-
mia (up to 262 lmol/L, 15.3 mg/dL) for 2 weeks,
and prolonged coagulopathy with a factor V level
below 20% at day 4. As a result of the delayed graft
function, the patient required intensive care unit treat-
ment for 1 week before the liver graft function
improved. He was able to be discharged in good gen-
eral condition on postoperative day 21.
Case 3: A 58-year-old male presented with multiple

colorectal liver metastases in the right hemi-liver as
well as in segment II, III, and 10 months after resec-
tion of the primary rectal tumor followed by 5 cycles
of chemotherapy containing Folfox and Avastin. A
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work-up including positron emission tomography and
CT failed to identify extrahepatic metastases. A cura-
tive resection was considered, involving a right hemi-
hepatectomy associated with wedge resections of the
tumors located in the left hemi-liver. The estimated
weight of the remnant liver after surgery was 320 g,
reflecting 26% of the whole-liver volume and RLBW
of 0.5% (Fig. 1). Postoperatively, the patient developed
severe encephalopathy, large amounts of ascites, hyper-
bilirubinemia up to 300 lmol/L (17.5 mg/dL), and
persistent coagulopathy with a prothrombin time
below 30%. He subsequently developed renal failure
requiring replacement therapy by postoperative day 5
and pulmonary edema requiring reintubation. He died
in the intensive care unit on postoperative day 13.
These three cases illustrate the wide spectrum and

clinical impact of SFSS, which possibly represents the
most serious complication after partial OLT and major
hepatectomy. Preventing SFSS and understanding the
underlying mechanisms may provide the most sig-
nificant impact in improving outcome of many
patients with liver diseases subjected to surgery or
transplantation.

What Is Small-for-Size Syndrome?

The liver has the fascinating ability to sustain its
function, even after major reduction of its parenchy-
mal mass, and regenerates to its normal size within a
few days.1 However, there is a critical mass below
which liver function cannot be preserved, leading to
the widely used but poorly defined entity of SFSS,
which is characterized by encephalopathy, coagulop-
athy, ascites, prolonged hyperbilirubinemia, and hypo-

albuminemia, and is often associated with renal
impairment followed by pulmonary failure and ulti-
mately death. A few attempts were made to standard-
ize the definition of SFSS to enable meaningful com-
parisons over time and among different institutions. At
this point, however, no consensus has been reached,
making comparisons of studies in the literature nearly
impossible.
We previously attempted to define SFSS3 by the

presence of two of the following three factors (biliru-
bin >100 lmol/L [5.85 mg/dL], international normal-
ized ratio >2 [prothrombin time "33%], and the
presence of encephalopathy #grade 3) on 3 consecu-
tive days over the first postoperative week. SFSS
should be, of course, considered only after exclusion of
other causes of liver failure such as technical problems
including outflow obstruction and immunological or
infectious complications. Another definition, nick-
named ‘‘fifty-fifty criteria’’, was designed to predict
liver failure and death of patients after liver resection,
and is defined by a prothrombin time <50% of nor-
mal along with a total bilirubin level >50 lmol/L
(2.9 mg/dL) on postoperative day five.4 This score was
further validated prospectively in a series of patients af-
ter liver resection, by showing that 70% of patients
who died postoperatively fulfilled the ‘‘fifty-fifty crite-
ria’’.5 This score was a strong predictor of death on
multivariate analysis (odds ratio ¼ 29.4; 95% confi-
dence interval ¼ 4.9-167). An important limitation of
this system is its availability for prediction at the ear-
liest 5 days after surgery. A third definition predicting
the degree of postoperative hepatic dysfunction6 was
based on selective parameters including bilirubin, pro-
thrombin time, serum lactate levels, and the degree of
encephalopathy. Each of these parameters was given
0-2 points, when changes were observed for at least 2
consecutive days. An appealing aspect of this approach
is that the degree of liver failure can be calculated at
any time during the postoperative course. The group-
ing of the score into none, mild, moderate, or severe
hepatic dysfunction was shown to correlate with the
size of the remnant liver (Fig. 2).

What Is the Minimum ‘‘Safe’’ Amount of
Liver After Surgery and Partial OLT?

The size of the remnant liver is a major determinant
of postoperative liver failure, and logically depends on
the quality of the liver parenchyma, or in other words,
the presence of underlying liver diseases. The impact
of underlying liver conditions will be discussed below,
and we will focus here on the ideal scenario of patients

Fig. 1. Multislice CT of a patient with multiple bilobar liver metasta-
ses. Preoperative volumetry predicted a future remnant liver (blue)
accounting for 26% of the total liver volume. Metastatic lesions do not
contribute to the total liver volume.
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presenting without significant risk factors. We tried to
determine the minimal amount of remnant liver mass
compatible with acceptable postoperative function and
survival through a survey including 100 international
well-established liver centers identified through the
memberships to two specialized societies in the field:
the IHPBA (International Hepato-Pancreatico-Biliary
Association) and EHPBA (European Hepato-Pancrea-
tico-Biliary Association).7 The results indicated that
most experienced liver surgeons consider 25% (range:
15%-40%) of the remnant liver mass (RLBW: 0.5) as
their limit for liver resections. Transplant surgeons, on
the other hand, use significantly higher figures, with a
GRWR of at least 0.8% (range: 0.6-1.2) which corre-
sponds to 40% of the transplanted total liver volume.
The lowest figure of 0.6% should be used only when
the graft is implanted in a recipient without cirrhosis
or with cirrhosis, but well-preserved liver function
(Child A and low MELD score).8 This discrepancy
between the critical liver mass needed after liver resec-
tion ("25%) and partial OLT ("40%) remains
unclear. Part of the explanation may include exposure
to cold ischemia, immunosuppressants, denervation of
the graft, as well as host factors such as changes in vas-
cular flow due to preexisting portal hypertension. Yet,
it is unclear which of these factors contribute most to
the requirement for a larger mass after OLT, when
compared to resection only. Of note, the survey dis-
closed a minimal residual volume of 50% (range:
25%-90%) after resection in the population of patients

with cirrhosis, highlighting the negative impact of pre-
existing disease.7,8

A few authors have correlated the extent of liver
resection with subsequent postoperative outcome.6,9-13

Two reports demonstrated a dramatic increase in the
rates and severity of complications after major resec-
tions with remnant livers < 20%,12,13 whereas the
group from Edinburgh,6 using the score mentioned
above, proposed a safety cutoff of 27% for the rem-
nant liver mass (Fig. 2). In transplantation, a number
of studies have suggested that grafts should be consid-
ered for LDLT only if the GRWR is higher than
0.8,14-17 which explains the consistent reply in the sur-
vey, and the wide acceptance of this lower limit.7

How Does Quality of the Liver Parenchyma
Affect Outcome of Major Liver Resection
and Partial OLT?

Many risk factors are incriminated to affect out-
comes in liver surgery and transplantation (Table 1).
Because of space limitation, we will focus on age, liver
steatosis, and exposure to chemotherapy, because those
are frequently encountered in our patients.

How Do ‘‘Older’’ Livers Tolerate Liver
Surgery and Partial OLT?

Strong evidence from basic18-21 as well as clini-
cal22,23 studies exist that liver regeneration is impaired
in old livers. The underlying mechanisms have only
been partially identified. Down-regulation of several
key molecules during aging ultimately lead to changes
in several cyclins, that arrest cells in the cell cycle.
Growth hormone seems to reverse these age-associated
alterations.20,21 In a rodent model, old animals demon-
strated delayed regeneration after partial hepatectomy,
which could be corrected to the range of young animals
by the addition of growth hormone. This treatment
activated cyclin-dependent kinases and down-regulated
its inhibitors, enabling the progression in the cell cycle
which is required for liver regeneration.

Fig. 2. Mean residual liver volume after liver resection grouped by
patients either without or with mild, moderate, and severe hepatic dys-
function. Dotted line indicates calculated critical remnant liver volume
of 27%. (Adapted from Schindl et al.6)

Table 1. Risk Factors for SFSS

% Age
% Steatosis
% Steatohepatitis
% Hepatitis
% Intraoperative blood loss
% Ischemia
% Obstructive cholestasis
% Preoperative chemotherapy
% Fibrosis
% Cirrhosis
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In a study in patients who have undergone LDLT,
serial volumetric analyses showed delayed liver regener-
ation in older donors. Donors older than 50 years of
age disclosed significantly smaller volumes 1 week after
resection compared to young (<30 years) individuals.
However, volume eventually returned to normal sizes
by 1 month after resection.22

Not only the regenerative capacity decreases with age,
but also liver volume24-26 and liver hepatic microcircula-
tion.27 In addition, a so-called ‘‘pseudocapillarization’’28

of the sinusoids has been observed with advancing age
which consists of a thickening of the endothelial lining
and loss of the fenestrae.29 This combination may
explain the known impaired clearance of a number of
drugs in the elderly population.30,31 Although specula-
tive, this might also influence liver regeneration. Despite
all these changes, the liver architecture seen in conven-
tional histological examination does not differ between
young and old individuals.32,33

In experimental studies, older mice were found to be
more susceptible than younger animals to ischemic injury,
which is related in part to a loss in energy stores, i.e., glyco-
gen and adenosine triphosphate.33 Some protective strat-
egies in young animals, such as ischemic preconditioning,
were no longer effective in older animals, but protection
could be restored by reloading the energy stores with glu-
cose.33 This finding was confirmed in a prospective
randomized controlled study that tested the effect of ische-
mic preconditioning in patients undergoing liver resection.
Patients above the age of 65 years did not benefit from the
protective effect of preconditioning.34

Despite the aforementioned limitations, several stud-
ies failed to show that advanced age affects the out-
come of patients undergoing a variety of surgical pro-
cedures35-37 including liver surgery.22,38,39 Yet, age has
to be considered a significant risk factor for major liver
resection and partial liver transplantation.1,40

Does Steatosis of the Liver Affect
Surgical Outcomes?

Many studies have shown that steatosis, particularly
severe steatosis, is a significant risk factor for postoper-
ative complications after major liver resection,41-43 and
exerts detrimental effects on graft and patient survival
after OLT.44-48 In contrast, other studies failed to iden-
tify any negative effects.49-53 These discrepancies have
led to many uncertainties in this field.
Hepatic steatosis is defined as excessive lipid accumu-

lation that exceeds 5%-10% of the organ weight.43 In
clinical practice, microscopic assessment of fat droplets
in hepatocytes, mostly on sections stained with hematox-

ylin and eosin, represents the gold standard by which to
characterize hepatic steatosis. Quantitative assessment is
recorded as the percent of hepatocytes containing lipid
droplets (mild steatosis: <30%; moderate: 30%-60%;
and severe >60%), whereas qualitative assessment takes
into account the size of the droplets in hepatocytes.54,55

If the lipid droplets displace the nucleus, it is considered
macrosteatosis, otherwise the term microsteatosis is
used. Many pitfalls have been demonstrated with this
approach, including errors due to liver sampling,56 the
inhomogeneous distribution of lipids throughout the
liver,57 and fixation and staining of liver sections.45,58

In addition, we recently showed poor agreement
among expert pathologists from different institutions in
assessing steatosis, both quantitatively and qualitatively,
in the same liver sections.59 For example, one patholo-
gist diagnosed 22% of patients with marked (#30%)
steatosis, whereas another recorded an incidence of
46%. Also, significant disagreement was documented
regarding many features of steatohepatitis.59

The actual types and contents of fat in the liver are
most likely more relevant to predict outcome after sur-
gery and transplantation than the amount.54,60,61 The
distinction between microsteatosis versus macrosteatosis
might be artificial, because continuity exists between
both forms of fat.54 For example, in a mouse model, the
chemical composition of hepatic lipids best predicted
the degree of injury following an ischemic insult,54 and
the microcirculatory failure following reperfusion corre-
lated with reduced hepatic content of O-3 fatty acids
and a nonphysiologically high O-6 : O-3 fatty acid ra-
tio.60 Pretreatment with dietary O-3 fatty acids reduced
total hepatic lipid content, with conversion of the pre-
dominant histological pattern of macrosteatosis into
microvesicular steatosis, improved sinusoidal perfusion,
and decreased hepatocellular damage after reperfusion.54

In humans, prolonged O-3 fatty acid supplementa-
tion to patients with liver steatosis improved the bio-
chemical and ultrasonographic features of fatty liver.62

Recently, we treated three candidates for LDLT, who
presented with biopsy-proven hepatic macrosteatosis >
30%, with oral O-3 fatty acids. Steatosis decreased sig-
nificantly in each case within 1 month of diet supple-
mentation, and a successful LDLT could be performed
(Fig. 3) (A.M. El-Badry, P.A. Clavien; unpublished data).

Does Chemotherapy-Induced Liver Injury
Adversely Affect Outcomes in Liver
Surgery?

An increasing body of evidence suggests that the
use of a variety of neoadjuvant or perioperative
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chemotherapeutic drugs in patients with colorectal liver
metastases improved long-term survival after liver resec-
tion.63-65 However, concerns exist regarding hepatic
injury related to these agents, termed chemotherapy-
associated liver injury (CALI). The exact incidence and
the relevance of the risk factor for major hepatectomy
remains controversial, but appear highly dependent on
the types of drugs used and the duration of
treatment.66

Some drugs have been associated with specific types
of injury, for example, the use of 5-fluorouracil and
irinotecan (CPT 11) may cause steatosis and steatohe-
patitis, whereas oxaliplatin is associated with an entity
called sinusoidal obstruction syndrome67 (Table 2).
The causative molecular events associated with 5-fluo-

rouracil and irinotecan hepatotoxicity include oxida-
tion of fatty acids and mitochondrial damage with fur-
ther production of reactive oxygen species, leading to
the inability to metabolize substances such as lip-
ids.68,69 Oxaliplatin-induced sinusoidal obstruction
syndrome has been associated with the depletion of
glutathione from sinusoidal cells secondary to the pro-
duction of exaggerated oxidative stress70 (Fig. 4).
In current practice, patients are usually treated with

a cocktail of drugs, which may induce synergistic toxic-
ities.71 Several factors may enhance the toxicity of che-
motherapeutic regimens such as hyperglycemia, obesity,
and older age, whereas aspirin may be protective.72

Most liver surgeons will call for caution in treating
patients exposed to long and extensive chemotherapy.

Fig. 3. Representative hematoxylin a eosin stained liver sections (400&) obtained from a candidate for living donation of the right hemi-liver
demonstrating (A) moderate infiltration of hepatocyte by lipid droplets that was (B) dramatically reduced within 1 month of oral O-3 fatty acid
administration (dosage: 1.5 g/day).

Fig. 4. Hepatic changes following long-term therapy with chemotherapeutic agents result in a typical pattern of liver injury. (A) Microvesicular
and macrovesicular steatosis with hepatocyte ballooning and Mallory bodies (arrows) is observed after treatment with irinotecan (chemotherapy-
associated steatohepatitis). (B) Profound nodular regenerative hyperplasia with nodules outlined by congested areas (darker areas) is observed
after treatment with oxaliplatin (sinusoidal obstruction syndrome).
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Data assessing the risk are scarce. Several studies have
failed to identify an additional risk, whereas others
reported increased morbidity in up to 23% of the
cases42,63,73,74 and even increased mortality66 (Table 2).
The impact of chemotherapy on liver regeneration

also remains unclear due to the lack of an animal
model of CALI and the limitation of endpoints for
liver regeneration in clinical studies. Most studies did
not show a negative impact on regeneration,75 whereas
a recent study demonstrated an impaired regeneration
following portal vein embolization in patients sub-
jected to chemotherapy.76,77

What Are the Underlying Mechanisms
of SFSS?

The mechanisms of SFSS, particularly in the pres-
ence of an underlying liver disease, remain largely
unknown. The first step to get insights into the mech-
anisms and molecular pathways involved in SFSS is
the availability of a convincing animal model. A few
years ago, we developed a model of OLT in the
mouse, which, contrarily to the rat model, required
reconstruction of the hepatic artery for full recovery.78

More than half of the animals in which the hepatic ar-
tery was not connected developed major bile duct
injury plus large areas of hepatocyte necrosis with
ensuing death of most animals within a few days after
OLT. In contrast, all animals with reconnection of the
hepatic artery enjoyed long-term survival.79 We subse-
quently developed a partial liver graft model that mim-
icked the clinical scenario of SFSS. A small graft
obtained by harvesting the middle lobe only, i.e.,
'30% of the total liver volume, consistently induced
primary nonfunction of the graft and animal death,
whereas all animals receiving a 50% graft survived.79

In the failing small grafts, we observed the develop-
ment of hepatocyte ballooning, microvesicular steato-
sis, and, surprisingly, an almost complete failure of he-
patocyte proliferation (Fig. 5). Similar findings were
noted in the human cases of primary nonfunction after
OLT. These findings led to the hypothesis that defec-
tive liver regeneration is the central mechanism of
SFSS. Similar models of SFSS following extensive liver
resection (e.g., 90% hepatectomy in rodents) disclosed
similar patterns of impaired regeneration,80,81 includ-
ing ballooning and the development of a diffuse form
of microsteatosis.82 In contrast to transplantation,
these latter models do not include warm ischemia and
therefore exclude the inflammatory cascade of ische-
mia/reperfusion injury. Yet, the common feature
appears to be inability of those small livers to regener-
ate. The focus therefore should turn toward the rele-
vant pathways of regeneration involved in SFSS.
The orchestra of cells, growth factors, or intracellu-

lar signaling pathways leading to liver regeneration are
complex, only partially identified, and have been well
summarized in a number of recent review articles (Fig.
6).1,83,84 An important credit should be given to
Thomas E. Starzl, who performed pioneering studies
in dogs that demonstrate the importance of portal
flow with the discovery of the mitogenic effects of
growth factors such as insulin.2

Although a comprehensive review on pathways of
liver regeneration is out of the scope of this article, a
few relevant mechanisms deserve attention. Liver
regeneration in many in vivo models appears to be ini-
tiated by an inflammatory cascade involving endotox-
ins85 and a number of acute phase proteins such as
interleukin-6 (IL-6),86 tumor necrosis factor alpha
(TNFa),87 or complement factors.88 In a series of
experiments that tested the role of acute phase proteins

Table 2. Patterns of CALI and Impact on Outcomes

Patterns of Parenchymal
Damage Drugs Implicated Type of Study Impact on Outcomes Weight of Evidence

Steatosis 5-fluorouracil and
leucovirin

Case-controlled studies
and retrospective review

Increased morbidity–mainly
infectious complications

Independent prognostic factor
on multivariate analysis in
single-center case-controlled
studies (Levels III and IV)

Sinusoidal obstructive
syndrome

Oxaliplatin Case-controlled studies
and retrospective review

Increased morbidity and
blood transfusion requirement

Evidence based on
case-controlled studies and
retrospective review (Levels III and IV)

Steatohepatitis Irinotecan Case-controlled studies Increased morbidity
and 90-day mortality

Independent prognostic factor
on multivariate analysis in
case-controlled studies (Level III)

Extrahepatic biliary
sclerosis

Intra-arterial
floxuridine

Case-controlled studies
and retrospective review

Long-term biliary
damage–usually permanent

Evidence from case-controlled
studies and retrospective
review (Levels III and IV)

Obtained with permission from Khan et al.134
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in our model of partial (30% graft) OLT in mice, we
found that pentoxifylline (PTX) rescued the failure of
regeneration and restored animal survival.89 PTX was
found to confer its protective effects through enhanced
production of IL-6, while down-regulating TNFa pro-
duction, because the protective effects of PTX was lost

in IL-6 knockout mice. This data also indicated that
IL-6 acts downstream to TNFa and that inhibition of
TNFa, possibly resulting from the ischemic injury,
might also be beneficial in this model. Similar data are
available following extensive hepatectomy, i.e., in the
absence of the associated insults inherent to OLT such

Fig. 5. Failure of liver regenera-
tion is a central mechanism of
SFSS. At 48 hours after transplanta-
tion, a 50% graft exhibits (A) minor
tissue injury, including (B) only few
foci of necrosis. In this graft, regen-
eration is completely preserved. In
contrast, the 30% graft displays
(C) microvesicular steatosis and (D)
a blunted regeneration. (Adapted
from Tian et al.79)

Fig. 6. Mechanisms of liver regeneration after hepatic resection (adapted from Clavien et al.1). This illustration demonstrates the complexity of
factors involved in liver regeneration involving bloodborne cells as well as soluble factors that interact with parenchymal and stromal cells of the
liver.
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as ischemia/reperfusion injury. For example, IL-6 or
the endogenous receptor agonist cardiotrophin-1 res-
cued hepatocyte proliferation and animal survival in
rodent models of 90% hepatectomy82 or ischemia/
reperfusion injury.90 However, chronic exposure to the
cytokine IL-6 may cause deleterious effects by increas-
ing proapoptotic proteins (Bax).91 Similar effects were
documented for complement, which was permissive
and protective only in a balanced low dose, but
induced damage at higher doses.92 We conclude from
these observations that there seems to be a labile equi-
librium for acute phase cytokines during the initial
phase of liver regeneration. Although regeneration can-
not be triggered in the absence of these molecules,
their excess may contribute to organ failure in the sit-
uation of extensive tissue loss or the presence of under-
lying pathological conditions such as steatosis.
Platelet-derived serotonin has recently been identified

as a major contributing factor to liver regeneration.93 In
a first set of experiments, antibody-mediated thrombocy-
topenia or various pharmacological inhibitions of plate-
let actions impaired liver regeneration. To identify the
critical component in platelets, mice lacking a rate-limit-
ing enzyme (tryptophan hydroxylase-1) involved in the
early step of peripheral serotonin biosynthesis, displayed
blunted liver regeneration after hepatectomy. This defect
was corrected with the use of 5-hydroxy tryptophan, a
precursor of serotonin which does not require the action
of tryptophan hydroxylase-1. In addition to the use of 5-
hydroxy tryptophan receptor agonist 2,5-dimethoxy-4-
iodoamphetamine (DOI) restored regeneration in mice
deficient in tryptophan hydroxylase-1.93

Similar results were observed in our model of partial
(30%) OLT. The use of DOI reversed the failure of
hepatocyte proliferation and rescued animal survival.94

These effects appeared independent from the IL-6
pathway, i.e., from the protective effects of PTX.
Others found that thrombocytosis enhances hepatocyte
proliferation in mice subjected to extended hepatec-
tomy, a mechanisms possibly related to signaling path-
way involving signal transducer and activator of tran-
scription 3 (Stat3) and Akt.95 However, IL-6 and
serotonin were not investigated in this study.
It was previously shown in a variety of rodent mod-

els that platelets contribute to warm96 and cold97 is-
chemic injuries. Thus, serotonin might also cause
injury in models combining hepatectomy and an ische-
mic insult such as transplantation. In a series of experi-
ments, we failed to show any negative impacts of sero-
tonin following ischemia/reperfusion injury in the
liver, but rather documented a beneficial effect in pro-
moting tissue repair following the ischemic insult.98

The mechanism through which serotonin enhances
regeneration is not yet fully clarified. Serotonin may
directly act on hepatocytes as a mitogen or may evoke
also indirect effects by improving hepatic microcircula-
tion, particularly in the aged liver (P.A. Clavien; unpub-
lished data) or by balancing the acute phase protein
reaction by nonparenchymal cells. Those questions are
the focus of current research in a number of laboratories.

Is the Hyperperfusion Theory Observed
by Surgeons Relevant?

The finding by surgeons of increased pressure and
flow in the portal vein after partial OLT, particularly
in small grafts, has led to the theory of mechanical
and overperfusion types of injury involving the hepatic
microcirculation.99-101 Denudation of the endothelium
lining of sinusoids may lead to focal hemorrhage into
connective tissue of the portal tract, consequently
impairing hepatic microcirculation, causing congestion
and with subsequent hepatocyte necrosis and liver fail-
ure.102,103 On top of this, the buffer effect of increased
portal flow causing decreased flow in the hepatic ar-
tery, which was well described many years ago,104 is
preserved after partial OLT.104-106 Thus, high flow and
pressure in the portal vein after partial OLTmay medi-
ate major injury through poor flow in the hepatic
artery.107

This theory was tested in a few patients after LDLT.
Dr. Boillot in Lyon, France, described a 55-year-old
recipient who received a left hemi-liver weighing 430
g corresponding to a GRWR of 0.6%, in whom he
performed a mesocaval shunt to decompress the portal
system (Fig. 7A).99 The postoperative course was
uneventful with normal serum aminotransferases and
bilirubin levels within 5 days. A number of strategies
have been developed with the same aim to decompress
the portal system. For example, construction of a por-
tocaval shunt connecting a branch of the portal vein of
the graft108 to the circulatory system, or the use of
transient portocaval shunts for a few days following
surgery,109 may provide benefits (Fig. 7B). The inher-
ent risk is a ‘‘too effective’’ diversion of the portal
blood to the systemic circulation with a risk of graft
failure through a stealing mechanism that causes
decreased portal flow. To circumvent such a risk, other
strategies have been designed such as splenic artery li-
gation or embolization.109-112 The rationale of this
procedure is to cause an increased pressure and flow in
the hepatic artery with a concomitant slight decrease
of the portal flow. A beneficial effect has been sug-
gested in a small case series of eight patients.103
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In contrast to these somewhat convincing surgical
observations, several reports provided data challenging
this ‘‘hyperperfusion theory’’. A series of small grafts
(GRWR <0.8%) were successfully used without any
attempt at a decompression of the venous system.14

Other researchers113 compared patients who received
large versus small grafts. Both reports failed to identify
any differences in outcome, suggesting that a high por-
tal flow is of little relevance. The group of S. T. Fan,
in Hong Kong, China, recently suggested that the lim-
iting factor is at the level of the outflow (hepatic veins)
rather than the inflow (portal vein).114 In a study
including 46 LDLT recipients, they did not observe
any correlation between portal inflow, portal pressure,
and SFSS. The authors explained this observation by
the routine inclusion of the middle hepatic vein for
the right hemi-liver grafts. Despite the use of a num-
ber of grafts with GRWR <0.8%, only one patient
disclosed signs of moderate sinusoidal congestion114

(Fig. 8).
These results lead to the conclusion that the protec-

tive effects of interventions leading to decompression
of the portal system are only useful in the presence of
an outflow impairment. However, the definition of
SFSS requires that technical problems are excluded.
Therefore, we propose that the ‘‘portal hyperperfusion
theory’’ should not be a feature of SFSS.

Protective Strategies

In this section, we will cover a variety of proven
and promising protective strategies to prevent and treat
SFSS after major liver resection and partial OLT. Sev-

eral strategies apply only to one of the procedures,
whereas others may confer benefits in both hepatec-
tomy and transplantation. There is strong evidence
that impaired regeneration is the major mechanism
leading to SFSS in animal models as well as in
humans. Therefore, most of the strategies target on
liver regeneration.

What Are the Strategies to Increase
Liver Size and Function?

Some novel strategies are available to increase vol-
ume and function of the potential remnant liver (also
called future remnant liver) in patients who will
undergo major liver resection. It is well-described that
selective occlusion of a portal branch causes atrophy of
the hepatic territory supplied by this vein and hyper-
trophy of the contralateral part.115 Atrophy of the
occluded hemi-liver occurs through an increased apo-
ptotic activity, whereas hypertrophy of the nonoc-
cluded lobe is due to increased hepatocyte proliferation
(hyperplasia).
Interruption of a portal branch can be achieved by

several methods such as selective embolization by a ra-
diology-guided transhepatic approach,13 or by surgical
ligation. In most cases, occlusion is performed at the
right portal vein in preparation for a right or extended
right hemi-hepatectomy, if the potential left liver rem-
nant is thought to be too small.1,115-117 Most surgeons
consider a major resection about 4 weeks after portal
vein occlusion.118 Portal vein embolization is also
increasingly used as a dynamic preoperative test to

Fig. 7. Two different shunting techniques to prevent hyperperfusion
of the graft99,108: Illustration in (A) shows a mesocaval shunt by using
an iliac vein graft and ligation of the superior mesenteric vein down-
stream from the shunt; the superior mesenteric venous outflow is
totally diverted into the inferior vena cava.99 Illustration in (B) shows a
mesorenal shunt with an end-to-side anastomosis of the inferior mes-
enteric vein and left renal vein.108

Fig. 8. Preoperative imaging of a healthy individual before living
related liver donation. The right hemi-liver (R) is used as a graft,
including the right and middle hepatic vein (dotted line). This strategy
prevents venous outflow obstruction. The left hemi-liver (L) remains in
the donor.
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identify patients in whom liver regeneration is thought
to be impaired; these patients should not undergo
major hepatectomy.1 This approach is especially rele-
vant for patients presenting with underlying liver
changes such as cholestasis, chronic liver diseases, and
a history of chemotherapy.119

The manipulations of liver volume offer the possi-
bility of curative surgery in many patients presenting
with bilateral tumors. This is best achieved through
the so called ‘‘two-stage procedure’’1 (Fig. 9). The
most common scenario for the first stage consists of
resection of all metastases in the left hemi-liver com-
bined with a right portal-vein ligation1 or emboliza-
tion.120 In the second stage, usually conducted 4 weeks
later, a right or extended right hemi-hepatectomy is
performed to achieve a curative (R0) resection. When
concomitant systemic121 or intra-arterial chemother-

apy75 is used, definitive liver resection is usually per-
formed 3 or more months later.1

Are Drugs that Enhance Regeneration or
Prevent Ischemia/Reperfusion Injury
Available?

Many drugs have been shown in a variety of animal
models to protect small remnant livers after partial hep-
atectomy or OLT, yet none has reached the clinic; in
fact, only a few have been tested in clinical trials.122

Antioxidants, caspase inhibitors, adenosine agonists, ni-
tric oxide donors, protease inhibitors, prostaglandins,
matrix metalloproteinase inhibitors, PTX, and O-3 fatty
acids60 are among the best candidates.122 A comprehen-
sive review of the potential mechanisms of those drugs
is beyond the scope of this review. We recently tested

Fig. 9. Normal liver anatomy and
the principle of portal vein occlusion
and two-stage procedure. (A) Nor-
mal liver anatomy is shown, with
segments II through VIII. Segment I,
which lies posteriorly, next to the
vena cava, is not shown. (B) Occlu-
sion of the right portal vein is
shown, which results in ipsilateral
atrophy of the right hemi-liver (seg-
ments V through VIII) and contralat-
eral compensatory hypertrophy of
the left hemi-liver segments I
through IV. (C) Metastases are
shown throughout the liver. Panels
(D), (E), and (F) show a two-stage
procedure. In the first stage, small
tumorectomies in the potential left
remnant hemi-liver and occlusion of
the right portal vein by means of
portal vein embolization or ligation
are performed. (D) A shrinkage of
the right hemi-liver after right portal
vein occlusion is shown, with com-
pensatory hypertrophy of the contra-
lateral hemi-liver. (E) In the second
stage, a curative liver resection
(right hemi-hepatectomy, segments
V through VIII, or extended right
hemi-hepatectomy, including seg-
ment IV) is performed (F). Obtained
with permission from Clavien et al.1
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PTX in a series of 100 patients who underwent major
liver resection, and documented a benefit in patients
presenting a RLBW <1.2.123 Other drugs were shown
in clinical trials to confer protection against ischemic
injuries. For example, a pancaspase inhibitor lowered
postoperative aminotransferase levels after OLT.124

Another widely investigated strategy is ischemic pre-
conditioning consisting of a short period of inflow
occlusion (Pringle maneuver) and reperfusion followed
by the prolonged ischemia during which the transec-
tion of the liver can be performed.125 Although, as for
the pancaspase inhibitor study, a significant lowering
of aminotransferase levels was observed postoperatively
after liver surgery34 and OLT,126 no relevant benefits
on the postoperative course could be identified.127

Currently, most surgeons use intermittent inflow
occlusion in selective patients undergoing major liver
resection.120,128 This strategy effectively prevents blood
loss, while preserving the postoperative function of the
liver, but so far no impact has been shown on liver
regeneration. At best, this strategy may achieve similar
results as major surgery performed without inflow
occlusion and without blood loss.120

Of interest, a novel approach involving pharmacolog-
ical preconditioning with the volatile anesthetic sevo-
flurane given 30 minutes prior to liver resection, and
tested in a randomized trial including more than 100
patients, was shown to dramatically ameliorate the post-
operative outcome.129 Not only surrogate markers of
injury such as postoperative aminotransferase levels were
lower, but the total number of complications, as well as
the number of severe complications, were significantly
decreased.129 Sevoflurane appears to confer its protective
effects through the nitric oxide pathway.130,131 Such a
strategy would also be available for OLT with evidence
that activation of the nitric oxide pathway is likewise of
benefit.132 We have initiated a multicentric randomized
study to test sevoflurane in liver transplantation.

What Are the Strategies to Prevent SFSS
in Steatotic Patients?

The impact of fat deposits in the liver in enhancing
SFSS after major liver surgery and partial OLT has
been discussed above. Taken together, although assess-
ment of hepatic steatosis and its associated risk are dif-
ficult,59 the protective strategy by O-3 fatty acid sup-
plementation has been demonstrated in several animal
models. Mechanistically, O-3 fatty acids ameliorate the
ischemic injury of the steatotic mouse liver via partial
resolution of steatosis, improvement of the microcircu-
lation,60 and its strong anti-inflammatory properties,

which is also active in lean animals.61 O-3 fatty acids
act also through eicosanoid derivatives, which counter-
act the proinflammatory O-6 eicosanoids.54 It has been
shown that oral administration of O-3 fatty acids to
patients with liver steatosis significantly improves the
fatty echotexture.62 As presented above (Fig. 3), we
have successfully treated three candidates for living
donation with O-3 fatty acids. It was also shown that
intravenous O-3 fatty acids prevent liver injury in chil-
dren receiving total parentral nutrition.133

Conclusion

In summary, SFSS is one of the most challenging
complications following major liver surgery and partial
OLT. A large effort to better understand the underlying
mechanisms and identified protective strategies is war-
ranted, because solving SFSS would enable safer partial
OLT with splitting of cadaveric grafts for two adults or
safer living donor hepatectomy, thereby making grafts
available for many more recipients. Similarly, curative
liver resection could be offered to more patients with
multiple and otherwise nonresectable tumors. The only
well-established and effective strategies are portal vein
occlusion to induce regeneration of the contralateral
side, or the so-called ‘‘two stage’’ procedure for major
liver surgery. Novel approaches include targeting spe-
cific pathways such as nitric oxide with sevoflurane,
and IL-6 with PTX or cardiotrophin. Finally, the use
of O-3 fatty acids may prevent injuries related to stea-
tosis. It is likely that the many groups working in this
field will provide new directions in the search for an
effective strategy to prevent and cure SFSS.
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